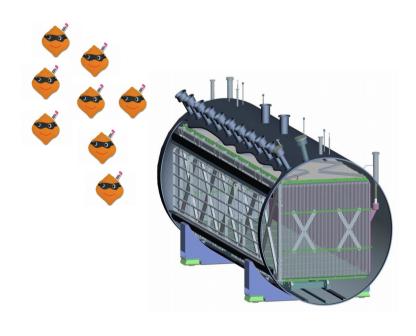
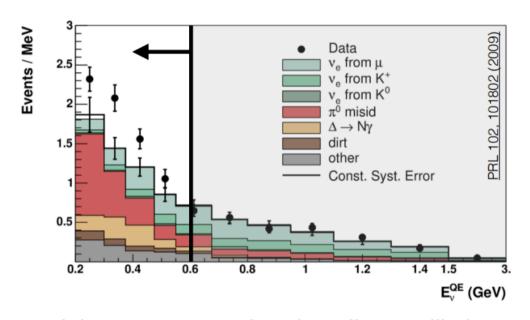
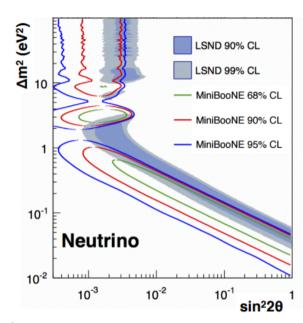
MicroBooNE Investigation of Low Energy Excess Using Deep Learning

Jarrett Moon (MIT) on behalf of the MicroBooNE Collaboration
TeVPA 2017



The MiniBooNE Excess





- MiniBooNE was a short baseline oscillation experiment
- Saw a $\sim 3\sigma v_e$ like excess between 200 & 600 MeV
- MiniBooNE's result is in tension with global 3+1 model fits
- Follow up with MicroBooNE! Why MicroBooNE?

MiniBooNE

µBooNE

Significant γ/e⁻ mis-id background

•
$$\sigma_{\text{stat}} \approx \sigma_{\text{sys}}$$

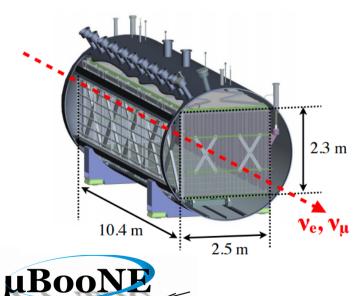
MicroBooNE

- Same beam, similar oscillation parameters, new detector tech
- y/e⁻ mis-id is much improved

The MicroBooNE Experiment

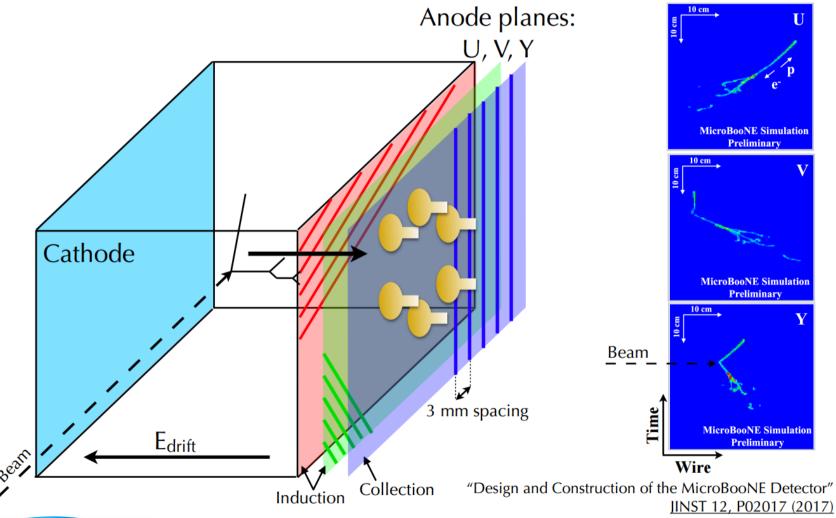
μbooNE field cage being inserted into Cryostat (left)

Booster v beam @ FNAL (right)



- Micro Booster Neutrino Experiment
- 85 ton active volume Liquid Argon Time Projection Chamber
- Located at FNAL on Booster Neutrino Beam
- $v_u \rightarrow v_e$ appearance experiment
- Running very smoothly so far!

The MicroBooNE Detector



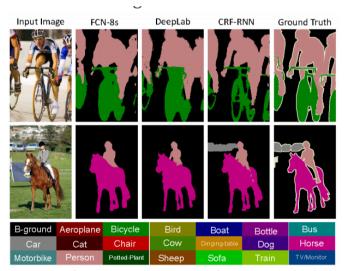
Deep Learning With CNNs

- For our purposes, Deep Learning means using convolutional neural networks (CNNs)
- CNNs were primarily developed for image recognition.
- MicroBooNE produces high resolution images with specific patterns we look for. Ideal for CNNs!
- Two types of interest, classification and semantic segmentation

A CNN trained to classify an image by what it contains (left)

A CNN trained to classify different pixels in an image by type (right)

Example of CNN classification, from <u>"ImageNet</u> Classification with Deep CNNs", NIPS (2012)



Example of semantic segmentation, from "Conditional Random Fields as Recurrent NNs", ICCV (2015)

Signal Definition

• Looking for v_e appearance signal and v_μ to constrain background

We choose subset of events producing one lepton and one proton

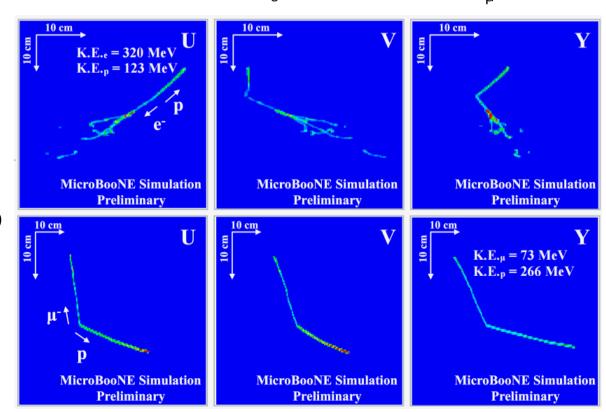
Lepton KE > 35 MeV, Proton KE > 60 MeV

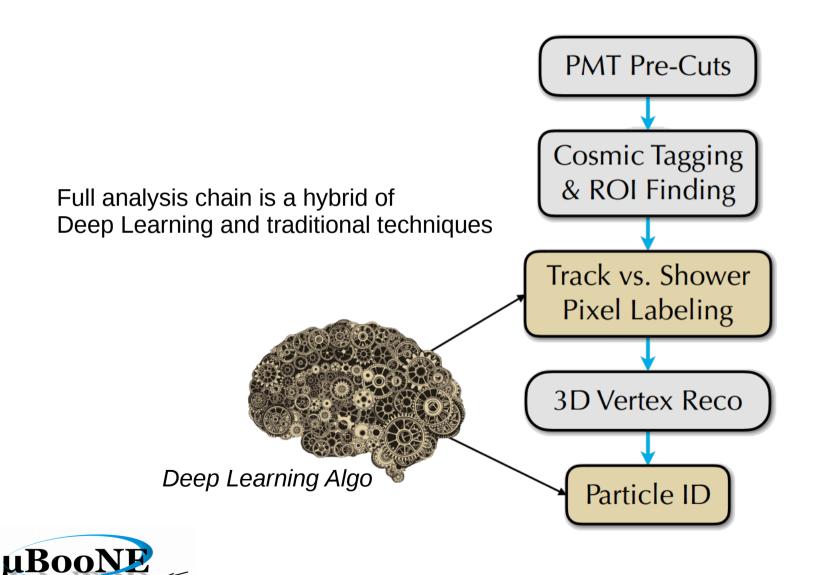
• Chosen for low background (only intrinsic v_e , constrain with v_u) and

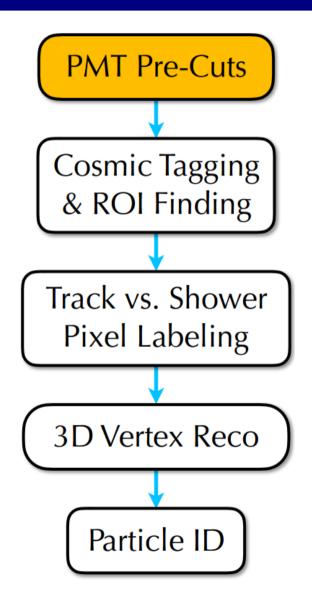
simple topology

A 1e1p v_e interaction (top)

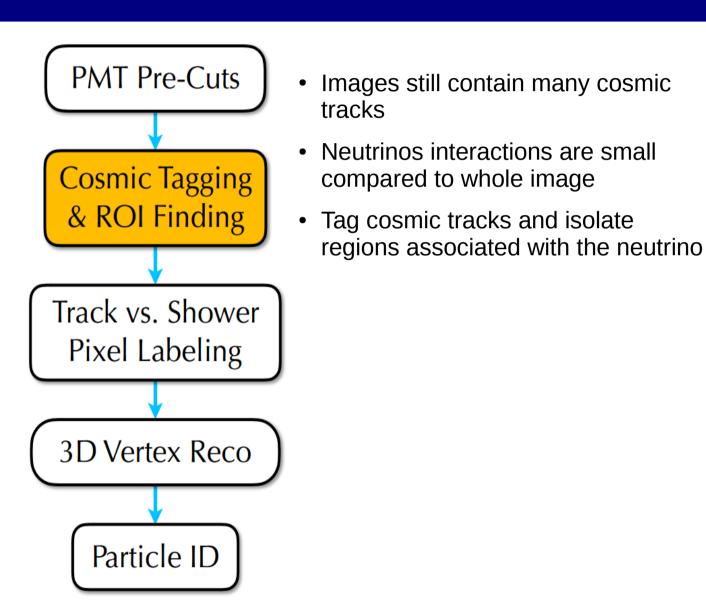
A $1\mu1p v_{\mu}$ interaction (bottom)





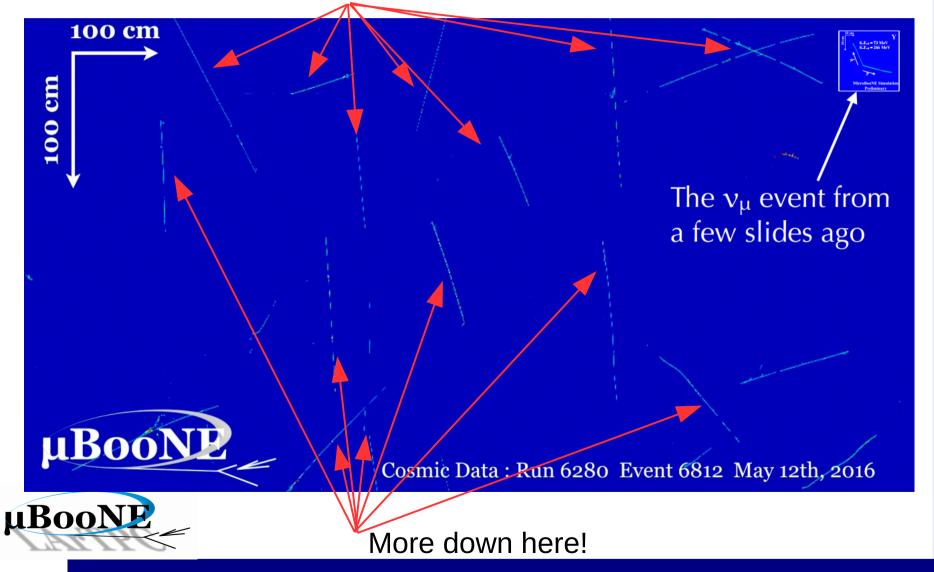


- Set of optical cuts to reject low energy background and noise
- Retains > 95% of neutrino events (From MC)
- Rejects > 75% of background (From off beam data)



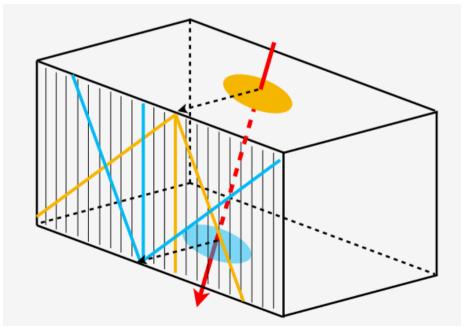
Cosmic Tagging

Cosmic tracks everywhere!



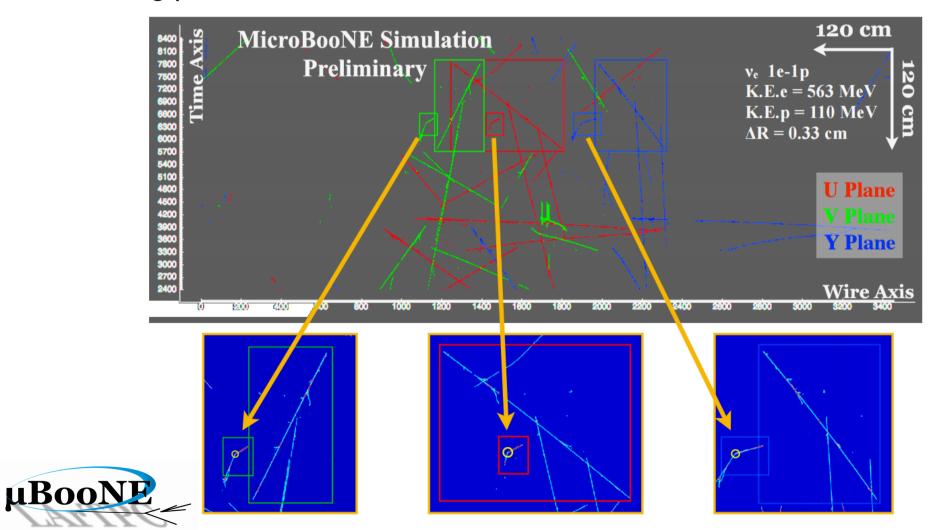
Cosmic Tagging

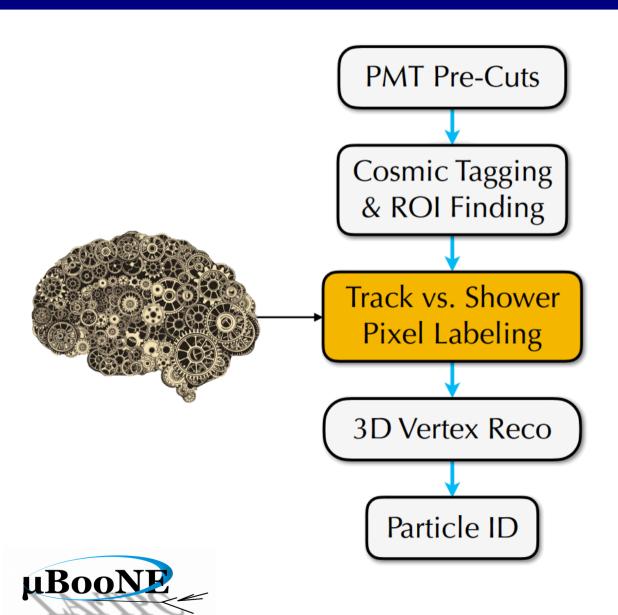
- We tag tracks that cross the TPC boundary
 - Top / Bottom: Track deposits charge on triplet of wires meeting at an edge
 - Upstream / Downstream : Track deposits charge on first / last wire in Y plane
 - $^{>}$ Anode / Cathode : Crossing have a specific ΔT between PMT flash and wire signal
- Construct full track using 3D path finding matched to boundary pts



Regions of Interest

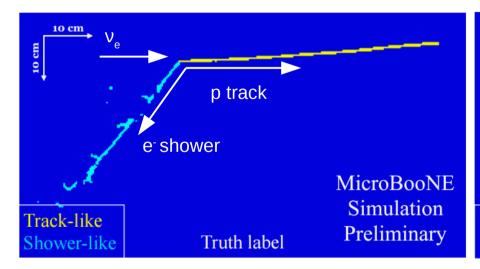
 Generate regions of interest (ROIs) by drawing 3D box around remaining pixel clusters

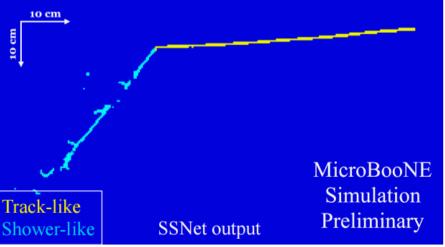




Pixel Labeling

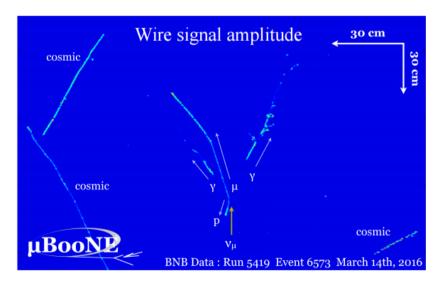
- We seek to separate track and shower clusters to aid in vertex reconstruction
- First use of Deep Learning, a semantic segmentation network labels each pixel as shower-like or track-like
- Overall labeling accuracy > 90%

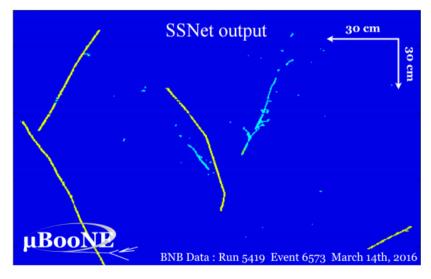




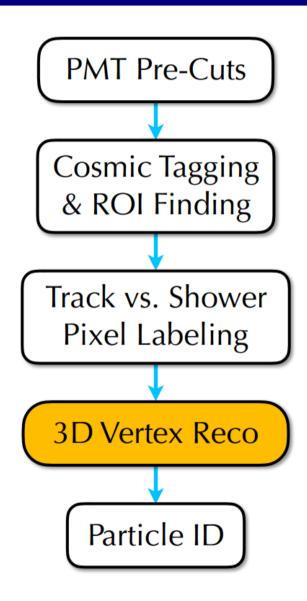
SSNet Accuracy on Data

- Use a sample of CC π^0 events to test SSNet performance on protons, muons, and gammas in data
- In the example below, the proton and muon are correctly labeled as tracks. The two γ showers are mostly labeled as shower type, with the exception of the trunk



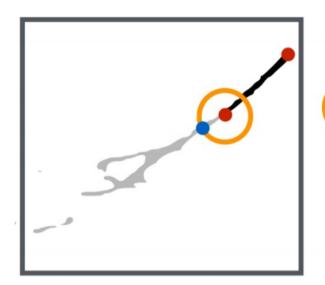


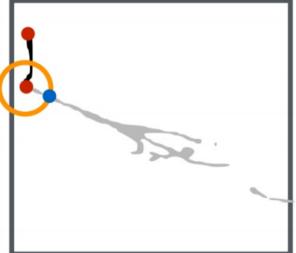
MicroBooNE Public Note, "Study Towards an Event Selection for Neutral Current Inclusive Single π^0 Production in MicroBooNE"

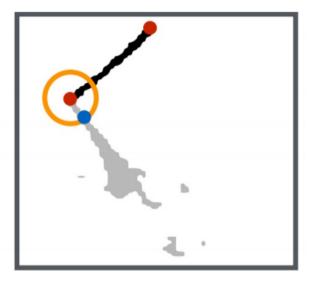


v_eVertex Reco

- Look for intersections of track-like and shower-like pixel clusters
- Correlate these intersections across planes
- Scan 3D region around points to find best match for where shower and track meet across all planes

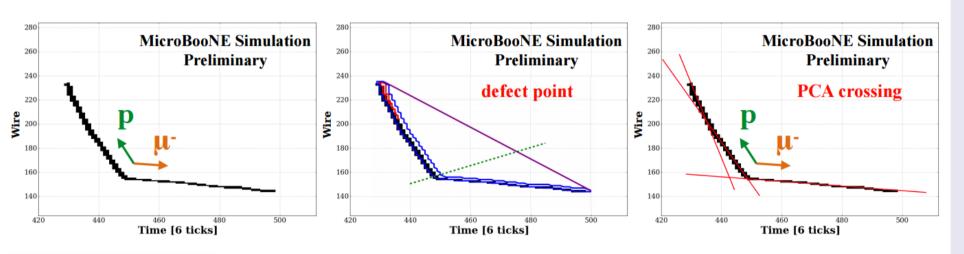


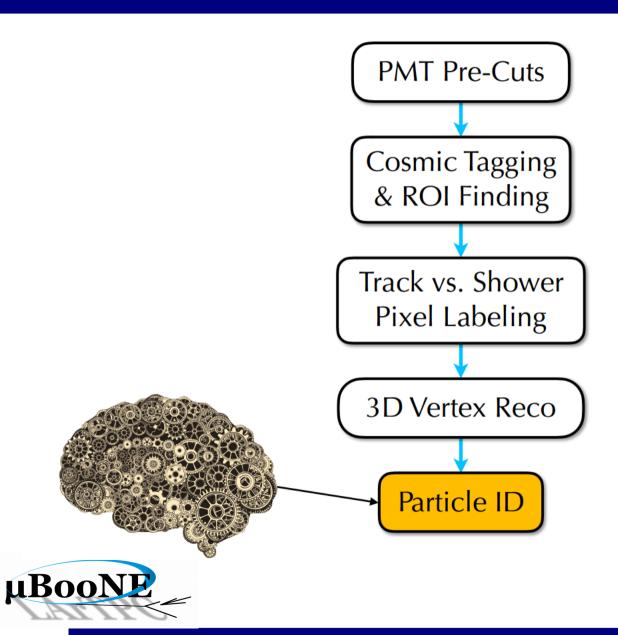




ν_μ Vertex Reco

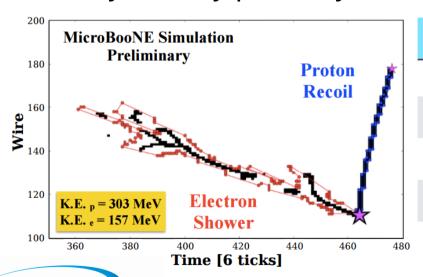
- Per plane, create 2D vertex seeds at any kink points
 - Find defects in convex hull
 - Find intersections of component linear fits
- Scan space around each 2D seed using an angular metric to find best vertex point
- Combine information across planes, if vertices across planes are
 3D consistent, claim a vertex at that point





Particle Identification

- Second stage of chain where Deep Learning is used
- After 3D vertex reconstruction, cluster pixels associated with a given track/shower emerging from a vertex
- Feed these individual clusters to a CNN trained to do particle type identification (HighRes GoogLeNet)
 - Note this differs from previous net which was trained only to broadly classify pixels by track or shower



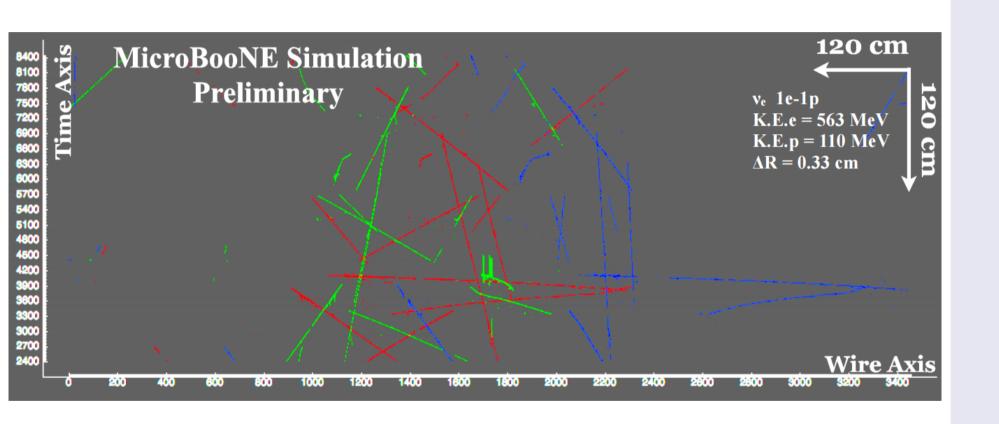
uBoon

Particle	Correct ID
e ⁻	$77.8 \pm 0.7\%$
γ	$83.4 \pm 0.6\%$
μ^-	$89.7 \pm 0.5\%$
π^-	$71.0 \pm 0.7\%$
р	$91.2 \pm 0.5\%$

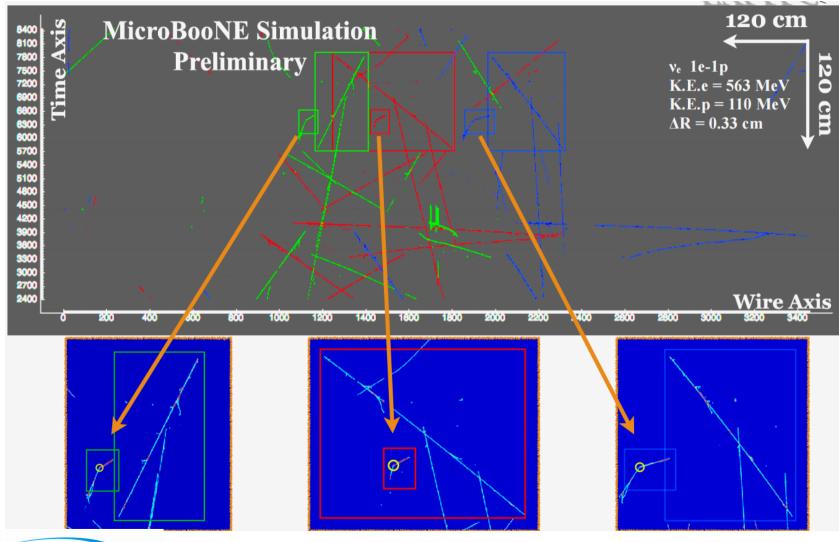
Substantial improvement over MiniBooNE which offered no similar detailed PID

JINST 12, P03011 (2017)

Processed Event Example



Processed Event Example



Summary

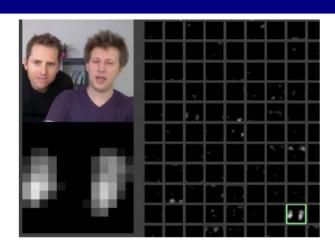
- Fully automated reconstruction chain for performing low energy analysis. Includes a mix of traditional and Deep Learning algos
- Efficiency and systematics studies in progress
- Progress will inform on low energy excess and provide tool development for future LArTPC programs

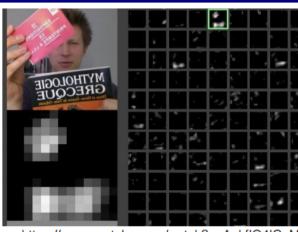
Thank You!

Questions?

Backups

More Detail on Deep Learning

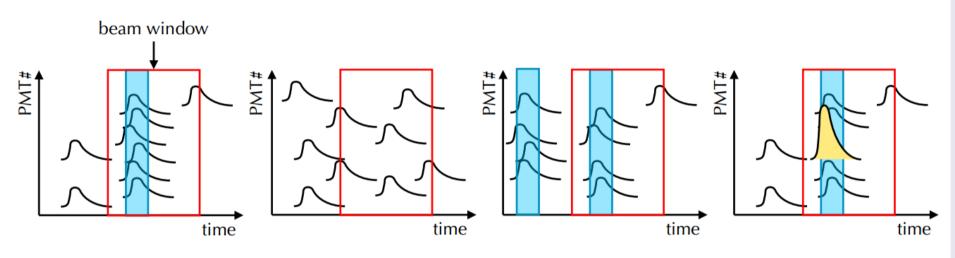




https://www.youtube.com/watch?v=AgkflQ4lGaM

- Convolutional neutral networks have several important properties
 - "Neurons" scan over the image looking at a limited set of pixels at each point
 - ▶ They "learn" local, translationally invariant features
 - ▶ Each layer of neurons builds on the features found by the previous ones to reach increasing levels of complexity/abstraction
- In the above, the black-and-white boxes show the "activation" of neurons in response to the images; the neuron highlighted on the right responds to faces, while the one on the left responds to text

Optical PreCuts

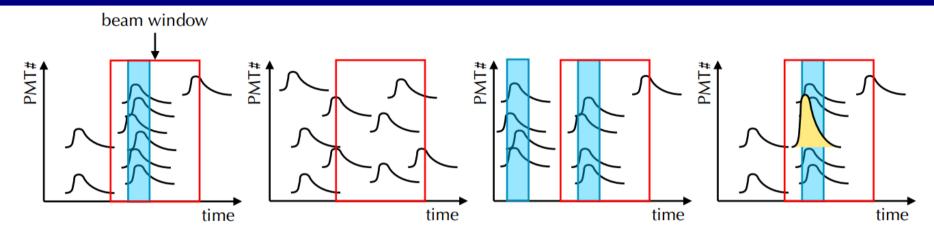


Keep: All possible neutrino events

Reject: Random, single-photoelectron noise

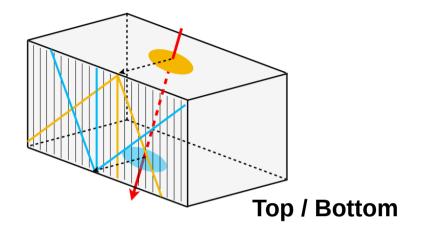
Reject: In-time flash caused by Michel electron, from the decay of pre-beam cosmic muon Reject: PMT-based noise

Optical PreCuts

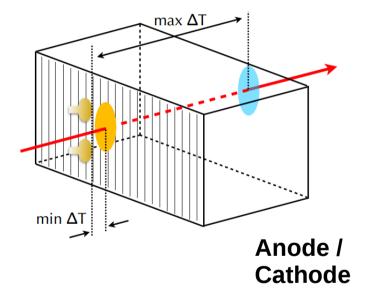


- Reject: Random, single-photoelectron noise (~200 kHz)
 - ▶ No time correlation between these single-photoelectron pulses
 - ▶ Require 20 photoelectrons in 93.75 ns this becomes the definition of a "signal"
- Reject: In-time flash caused by Michel electron, from decay of a cosmic muon
 - ▶ Require no signal for 2 µs before the beam window
- Reject: PMT-based noise
 - ▶ Limit the total amount of the light collected by a single PMT to <60% of the total light
- Keep >96% of neutrinos (based on simulations)
- Reject >75% of background (based on rejection of off-beam data)

Cosmic Tagging







CNN PID Performance

Sample	Electron	Photon	Muon	Pion	Proton
Detection Accuracy (%)	77.8 +/- 0.7	83.4 +/- 0.6	89.7 +/- 0.5	71.0 +/- 0.7	91.2 +/- 0.5
Most frequuent MisID (%)	γ (19.9)	e ⁻ (15.0)	π (5.4)	μ ⁻ (22.6)	μ ⁻ (4.6)

